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Artificial intelligence is now firmly established in society. 
Whether we are searching on Google (Mountain View, CA, 
USA), being guided by recommendation algorithms or using 
facial recognition or smart home software, artificial intelli-
gence is a daily presence in our lives, and in almost all areas: 
business, science, medicine, and increasingly in orthodontics. 
What is artificial intelligence, what does it encompass, what 
can it already do in orthodontics and where is it taking us in 
the discipline? What opportunities does it offer and what 
negative effects does it have? In this article, the first in a three-
part series, we will discuss these questions and strive to an-

swer them. 

Introduction

When the term artificial intelligence (AI) was coined at a 
conference held in the USA in 1956, it was initially only of 

interest to computer scientists. Now, 65 years later, AI has 

found its way into all our lives. In medicine, AI has become 

indispensable in certain areas; one of the most frequently 

cited examples is the analysis of radiographs and MRI scans 

using AI-supported software. The first part in this series  
“AI in Orthodontics” addresses the presentation of AI in 

general. It examines how AI is divided into subfields (ma-

chine learning [ML], neural networks [NNs], deep learning 

[DL] and convolutional neural networks [CNNs]), and how 

Big Data is used in AI software so it can make decisions 

independently.

What is AI?

AI (or Assistant Intelligence as some like to call it) is a sub-

field of computer science that involves incorporating 
human thought and decision-making processes into com

puter-based procedures. An exact definition of AI is still 
pending. According to Oxford Reference, AI is “the theory 

and development of computer systems able to perform 

tasks that normally require human intelligence, such as 

visual perception, speech recognition, decision-making, 

and translation between languages”1.  
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There are many ways of classifying AI algorithms, which 

encompass three main tasks:

1.	 Classification: The objective here is to classify data into 
one or more classes; for example, if given a credit card 

transaction, classifying that transaction as fraudulent or 

not, or, if given a 3D intraoral scan of a tooth, classifying 

that tooth by giving it the correct tooth number. 

2.	 Regression: Instead of classifying things into discrete 

classes, regression or estimation algorithms try to pre-

dict a number/value. For example, an AI algorithm can 

use various parameters to forecast sales numbers. Can 

an AI algorithm predict the length of orthodontic treat-

ment for a patient?

3.	 Generation: This class of AI algorithms essentially model 

how the data were generated and thus can generate 

synthetic data. Can an algorithm generate synthetic 

(fake) images of a horse once it has learnt from images 

of real horses? Can an AI algorithm generate a missing 

tooth to be used in dental implants based on how teeth 

look and given a scan of a patient’s mouth?

AI can also be considered to consist of several subgroups 

(Fig 1): ML, as part of AI, in turn has two subgroups, NNs and 

DL, of which CNNs are a further subgroup. 

Machine learning

With AI, the computer is programmed to make decisions. 

A  traditional AI paradigm is shown in Fig 2 and involves 
studying the problem, summarising the rules, and then pro-

gramming the computer to implement those rules. Once 

the program has been evaluated, the application is 

launched. Let us take the example of trying to detect fraudu

lent credit card activities. A financial expert can devise cer-

tain rules, for example that if two transactions are initiated 

from two different states and less than 10 minutes apart, 
the transaction that took place furthest from the user’s 

home address is fraudulent. Once computers are pro-

grammed with such rules, we have AI-based fraudulent ac-

tivity detection. 

So, what is ML and why do we need it? Firstly, as seen in 

the aforementioned example of detecting fraudulent credit 

card activities, an expert was needed to summarise the 

rules. This results in the development of custom AI. Sec-

ondly, in many applications, such rules are highly complex 

or not even agreed upon (is there a book that contains all 

the rules that would classify a fraudulent activity?). Finally, 

after we have spent years developing the system and re-

lease it, thieves adapt! Once they discover how a computer 

classifies a fraudulent activity, they will adjust their behav-

iour to avoid detection. Another example is autonomous 

vehicles. Just imagine the rules that someone would need 

to program manually to cover all the different driving 
scenarios!   

The basic principle of ML is to learn and improve autono

mously from input data. It is an alternative to conventional 

programming. Instead of a prescribed program, the com-

puter is given data with known relationships. In this pro-

cess, the computer learns from known structures to apply 

them later to unknown contexts (Fig 3). ML has existed for 

decades in some specialised applications like optical char-

acter recognition (OCR).

ML uses algorithms to analyse known data. It detects 

statistical regularities that are represented in models. The 

models respond to new, as yet unknown data and sort 

them into categories. The more learning data ML receives, 

the better the models become. ML is very precise when 

structured data are available. From these structures, e.g., 

data from an Excel (Microsoft, Redmond, WA, USA) file, al-

CNNs

AI

ML

DL

Fig 1  AI, ML, NNs/DL and CNNs.
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gorithms are built that search these structures for new, 

unknown information. 

The main applications of ML in medical diagnostics are 

the evaluation of computed tomography (CT) scans and 

electrocardiograms (ECGs) and detection of skin lesions. 

Robotics and ML are becoming indispensable in surgery, or 

at least increasingly important. The da Vinci Surgical System 

(Intuitive Surgical, Sunnyvale, CA, USA), although not fully 

automated, is an impressive example. 

There are many classifications of ML algorithms based 
on different criteria. For example, algorithms can be classi-
fied based on whether they are trained with human super-

vision, or whether they can learn incrementally on the fly. 
According to their classification, they can be described as 
supervised, unsupervised, semi-supervised and reinforce-

ment learning algorithms. 

In supervised learning, the algorithm is fed the training 

data that include the labels (the true classes) in the case of 

classification algorithms and the desired value in the case 
of predictor algorithms. Examples of supervised learning 

algorithms include k-nearest neighbours, logistic regres-

sion, linear regression, support vector machines, random 

forests, decision trees and NNs (DL).  

With unsupervised learning, the training data are not la-

belled. For example, there are various pictures that may be 

known to include a certain number of object classes 
(e.g., horses, humans), but the class that any particular image 
contains is unknown. Unsupervised learning algorithms try 

to group the training data together automatically and define 
the classes. Once new data are encountered, they can be 

classified as belonging to one of the defined classes. Some 
of the algorithms that can be used in unsupervised learning 

Study the problem 
domain

Write the rules Launch

Analyse the errors

Accurate?

Fig 2  A traditional AI paradigm.

Fig 3  ML approach.
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include K-means, one-class support vector machines, isola-

tion forest and principal component analysis.

With semi-supervised learning, a portion of the training 

data is labelled but a large amount is not. This is because it 

is typically time-consuming and difÏcult to label data (e.g., 
manually classifying tumours in hundreds of thousands of 

images). In such instances, labels would be generated for 

some of the data and then a combination of supervised and 

unsupervised learning would be used to generate the model. 

Reinforcement learning is somewhat different in that ML 
would have an agent that observes the environment and 

performs actions. It can then be rewarded or penalised 

based on a certain regulation to learn how to perform the 

correct actions. For example, robots use reinforcement 

learning to learn how to walk. When the robot falls, its actions 

are penalised, and as it takes steps successfully, its actions 

are rewarded, such that it ultimately learns how to walk.

Deep learning

Artificial NNs (ANNs) were inspired by the networks of bio-

logical neurons found in the human brain and are at the 

core of DL. DL is a subfield of ML and consists of massive 

multilayer networks of artificial neurons that can automat-
ically discover useful features, that is, representation of in-

put data needed for tasks such as detection and classifica-

tion, given large amounts of unlabelled or labelled data 

(Fig  4). Labelled data are raw data to which meaningful 
labels such as ‘add tags’ or ‘assign classes’ have been 

allocated. 

DL can automatically learn useful representations of 

data, thereby eliminating the need for handcrafted fea-

tures. The representations learnt from one dataset can be 

useful even when applied to another. This property, re-

ferred to as transfer learning, is not unique to DL, but the 

large training data requirements of DL make it particularly 

useful in cases where the relevant data for a particular task 

are scarce. In medical imaging, a DL system can be trained 

using a large number of natural images or those in a differ-

ent modality to learn proper feature representations that 

allow it to ‘see’. The trained system can subsequently use 

these representations to encode a medical image that is 

employed for classification2. 

The success of DL compared to traditional ML is primar-

ily due to two interrelated factors: depth and composition-

ality. A further advantage of deep architectures relates to 

how successive layers of the network can utilise the rep-

Few labelled data

Few labelled data

Train with  
labelled data

Labelled data

Retrain with the 
labelled data

Predict labels for the 
unlabelled data

Many unlabelled data

AI

AI

Fig 4  In ML, most models are supervised. They rely on labelled training data. When a model is trained to classify data, labels are used 
that indicate the class to which each data sample belongs. This allows typical patterns to be learnt for each class.
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resentations from previous layers to compose more com-

plex representations that better capture critical characteris-

tics of the input data and supress the irrelevant variations. 

In image recognition, deep networks have been shown to 

capture simple information such as the presence or absence 

of edges at different locations and orientations in the first 
layer. Successive layers of the network assemble the edges 

into compound edges and corners of shapes, and then into 

increasingly complex shapes that resemble object parts. 
Hierarchical representation learning is very useful in compli-

cated tasks such as computer vision where adjacent pixels 
and object parts are correlated with each other and their 
relative locations provide clues about each class of object2.

As larger datasets have become more commonplace 

and commercial gaming graphical processing units (GPUs) 

have become available, it is now possible to explore how 

larger deeper architectures can be trained faster2.

The longer a network is trained, the more complex its 

solution becomes; thus, by regularising on time through 

early stopping, complexity will be reduced and generalis

ability improved. Dropout, a term that refers to dropping 

out units in a neural network2, is another efÏcient way to 
prevent overfilling.

Convolutional neural networks

A key problem with ML is that useful features are difÏcult to 
design and often require the collective efforts of many re-

searchers over years or even decades to optimise. In add

ition, the features are domain- or problem-specific. Trad-

itional ML algorithms were heavily dependent on having 

access to good feature representations; otherwise, it was 

extremely difÏcult to improve the state-of-the-art results 
for a given dataset2. CNNs were developed to solve this 

problem. CNNs are part of NNs. They are very successful in 

image processing and recognition or speech recognition, 

and consist of several layers: the convolution layer, pooling 

layer and fully connected layer.

The convolutional layer is the actual folding level. It can 

recognise and extract individual features in the input data. 

In image processing, these features can be lines, edges or 

specific shapes. The processing of the input data takes 
place in the form of a matrix. Matrices of defined size (width 
× height × channels) are used. By adding the convolutional 

layer to a traditional NN machine, the computer automatic

ally learns what features in the image are important and 

hence generalises the solution. 

The pooling layer, also known as the subsampling layer, 

compresses and reduces the resolution of the detected 

features. To achieve this, the layer uses methods such as 

maximum pooling and mean pooling. Pooling discards su-

perfluous information and reduces the amount of data. 
This does not diminish the performance in ML; the reduced 

amount of data increases the computational speed. 

The final layer of the CNN is the fully linked layer, which 
joins the repeating sequences of the convolutional and 
pooling layers. All features and elements of the upstream 

layers are linked to each output feature. The fully connected 

neurons can be arranged in multiple layers, and the num-

ber of neurons depends on the classes or objects that the 
NN is to distinguish3. 

Compared to conventional non-CNNs, CNNs offer nu-

merous advantages. They are suitable for ML and AI appli-

cations with large amounts of input data, such as image 

recognition. The network is robust and insensitive to distor-

tion or other optical changes. They can process images cap-

tured in different lighting conditions and from different per-

spectives and still recognise the typical features of an image. 

Because CNNs are divided into several local, partially 

meshed layers, they have a much smaller memory footprint 

than fully meshed NNs. The convolutional layers drastically 

reduce the memory requirements, and training time is also 

reduced significantly. Using modern graphics processors, 
CNNs can be trained very efÏciently. In image recognition, 
CNNs are the state-of-the-art method for ML and clas

sification2. 

Let us explain how CNNs work using image recognition 

as an example. CNNs detect and extract features of the in-

put images using filters. Recognition of the structures is 
location independent within the image. Initially, CNNs rec-

ognise simple structures such as lines, colour spots and 

edges in the first layers. In the next levels, CNNs learn com-

binations of these structures, such as simple shapes or 

curves. With each level, more complex structures can be 

identified. The data are repeatedly resampled and filtered 
in the layers. In the final step, the results are assigned to the 
classes or objects to be recognised2. Unlike ML, CNNs can 

process restructured data; however, huge amounts of Big 

Data are needed for this. 
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Other types of NNs (also part of DL) include recurrent 

NNs (RNNs) and generative adversarial networks (GANs). 

With NNs, the output from one layer feeds the input to the 

next. With RNNs, in addition to having feedforward net-

works like those in NNs, in some layers, the output from 

one neuron in the layer is fed as input to the neurons in the 

same layer. These networks can be used for time series 

forecasting, for example. GANs, on the other hand, are typ-

ically CNNs that consist of two models, a generative model 

(generates data) and a CNN classification model (classifies 
whether the generated data are fake or real). The job of the 
generative CNN is to generate data that look real and thus 

deceive the classifier, and the classification model must 
prevent this from happening. Training both models and 

having them compete results in a generative model that 

generates very realistic data. GANs are used frequently in 

art to generate images and videos, but have recently also 

been employed to generate 3D models of missing crowns 

for dental implants.

DL in medical imaging

In medical imaging, ML algorithms have been used for dec-

ades, starting with algorithms to analyse or help to inter-

pret radiographic images in the mid-1960s. Initially, com-

puter-aided detection/diagnosis algorithms predominantly 

used a data-driven approach, like most DL algorithms to-

day; however, unlike most DL algorithms, the majority of 
these early methods were heavily dependent on feature 

engineering. A typical workflow for developing an algorithm 
for a new task consisted of understanding what types of 

imaging and clinical evidence clinicians use for the interpret

ation task, translating the knowledge into computer code to 

automatically extract relevant features, and then using ML 

algorithms to combine these features into a computer 

score. Data were propagated through the networks via con-

volutions, the networks learnt filter kernels, and the 
methods did not require feature engineering; that is, the 

inputs into the networks were image pixel values2.

It is impossible to imagine imaging diagnostics without 

AI. Three- and two-dimensional CBCT images are improv-

ing, and AI is responsible for this. Particularly in oncology, 

DL helps to read images accurately. The results of scientific 
studies of image evaluation have illustrated that DL some-

times already reads with greater accuracy than trained and 

experienced physicians4.

One application area of DL is low-dose image recon-

struction. This is important in modalities with ionising radi-

ation such as CT or positron emission tomography (PET). 

Techniques similar to those described for denoising have 

been applied to artefact reduction. Metal-affected projec-

tions can be eliminated accordingly. A study has shown how 

to use DL to generate synthetic CT images from MRI free 

from ionising radiation2. 

Analysis of imaging procedures using DL will not replace 

physicians but makes it possible to perform analyses more 

accurately from a second perspective. Fourcade and 

Khousari5 call DL in medical image analysis “a third eye for 

the doctors”; however, they foresee that radiology and 

pathology will be transformed greatly by it.

Kim et al6 predict that a fully automated cephalometric 

analysis algorithm and web-based application can be widely 

used in various environments to save time and effort for 
manual marking and diagnosis. They found that the auto-

mated algorithm achieved a successful classification rate 
of 88.43%. 

In a pilot study, Schwendicke et al7 applied CNNs to 

detect caries lesions in near-infrared light transillumin

ation (NILT) images and concluded that a moderate deep 

CNN trained with a limited amount of NILT image data 

showed a satisfying discriminatory ability to detect caries 

lesions. 

DL requires a large amount of data because it learns 

features directly from the data via an end-to-end process. 

In an anatomical classification study of LT data, at least 
1000 datasets per group were required to achieve 98.0% 
validation accuracy with DL, and 4092 datasets per group to 

reach the desired accuracy of 99.5%8. It is especially import

ant to emphasise the need to construct a large-scale data-

set of public dental information to make the clinical appli-

cation of DL possible. CBCT images vary widely depending 

on the machine used and the exposure conditions, and this 

can impede research into DL. For example, collecting and 

learning data on a machine-by-machine basis is difÏcult 
because models learnt on one machine do not apply to 

other machines. Although attempts have been made to 

develop guidelines in Europe and England regarding the 

image quality of CBCT, no international standard has yet 

been established9. 
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Intraoral scanning is another field that employs DL, as 
almost all intraoral scanners utilise background algorithms 

to a certain extent.

Classification and segmentation of 
teeth from intraoral scans

Accurate segmentation of data derived from intraoral scans 

(IOSs) is a crucial step in a computer-aided design system 

(CAD) for many clinical tasks in orthodontics. To obtain the 

highest possible quality, a segmentation model may pro-

cess a point cloud derived from an IOS in its highest avail-

able spatial resolution, particularly to perform a valid 

analysis in finely detailed regions such as the curvatures in 
borders between two teeth10.

Traditional geometry-based methods tend to achieve 

undesirable results due to the complex appearance of 

human teeth. Traditional tooth segmentation methods 

barely enable labelling of individual teeth. Xu et al11 devel-

oped a generic and robust segmentation model by exploit-

ing CNNs. In their study, the segmentation task was com-

pleted by labelling each mesh face, and they extracted a set 

of geometry features as face feature representations11. The 

accuracy of their mesh labelling methods exceeds that of 

the state-of-the-art geometry-based methods, reaching 

99.06% measured by area which is directly applicable in 
orthodontic CAD systems, and also offers robust protection 
against any possible foreign matter on the model surface, 

such as air bubbles and dental accessories11. 

Tian et al12 proposed a novel approach based on a 

sparse voxel octree and 3D dental models for segmenting 

and classifying tooth types. The tooth classification method 
capitalised on two-level hierarchical feature learning and 

was proposed to solve the misclassification problem in 
highly similar tooth categories12. The authors exploited an 

improved three-level hierarchical segmentation method 

based on deep convolution features to conduct segmenta-

tion of the teeth from the gingiva and of each individual 

tooth, and the conditional random field model was used to 
refine the boundary of the gingival margin and the region 
where tooth fusion occurs12. The experimental results 

showed that the classification accuracy in the level 1 net-
work was 95.96%, the mean classification accuracy in the 
level 2 network was 88.06% and the accuracy of tooth seg-

mentation was 89.81%12. Compared with the existing state-

of-the-art methods, the proposed method offers greater 
accuracy and universality, and there is great potential for its 

application in computer-assisted orthodontic treatment 

diagnosis. Tooth segmentation is a core step in many oral 

medical research processes and forms the basis for com-

puter-aided dental diagnosis and treatment. A high level of 

accuracy in segmentation is becoming increasingly import

ant, especially in aligner orthodontics. 

As computer hardware and software technology have 

improved, many commercial CAD/CAM software programs 

for orthodontics such as 3Shape (Copenhagen, Denmark), 

OrthoCAD (Cadent, Carlstadt, NJ, USA) and OnyxCeph (Image 

Instruments, Chemnitz, Germany) have emerged that can 

achieve automatic tooth segmentation to a certain extent. 

Due to the complexity of interactive operation and the high 

degree of manual intervention in orthodontic CAD systems, 

their segmentation efÏciency appears lower. Orthodontic 
patients usually have symptoms such as crowding, missing 

teeth or indistinct boundaries between teeth12. 

The authors report their attempt that used a hierarch

ical feature learning framework based on 3D CNNs to auto-

matically extract high-dimensional features from 3D tooth 

models to segment and classify the tooth types. The pro-

posed method of hierarchical segmentation is robust to 

various complex malformations in patients’ teeth that have 

important application value for virtual tooth arrangement 

in subsequent orthodontic treatment procedures12.

The main contributions of the study by Tian et al12 are 

as follows: 

	• A general and robust tooth segmentation and classifica-

tion framework that achieves 88.06% accuracy for highly 
similar tooth categories and 89.81% for individual tooth 
segmentation. 

	• An optimised design of two-level hierarchical classifica-

tion network architecture that can solve the misclassifi-

cation problem in highly similar tooth categories. 

	• An improved three-level hierarchical segmentation net-

work that is based on conditional random fields to re-

fine the segmentation boundary and that is robust to 
various complex malformations in teeth. 

	• A flexible and extendible model that can be retrained to 
generalise for new dental samples, which allows the 

framework to improve the intelligence level of ortho-

dontic CAD systems. 
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As an important step in a computer-aided orthodontic sys-

tem, the main aim of tooth segmentation is to accurately 

locate, identify and extract teeth based on patients’ digital 

dental model. The automatic segmentation of individual 

teeth is not a simple task since the tooth shapes are com-

plex and tooth arrangement varies from person to person; 

however, the successful application of DL in medical diag-

nosis has demonstrated its superiority in reducing labour 

costs and manual intervention. Additionally, the self-learn-

ing ability of CNNs can dramatically improve the accuracy 

and efÏciency of the network12.

Discussion

AI is now present in many areas of orthodontics. We use 

CBCT, MRI, scanners and virtual treatment software in our 

practices. Imaging techniques (CBCT and MRI) are becom-

ing increasingly accurate, which gives orthodontists more 

confidence and results in a more accurate diagnosis and 
therefore better treatment decisions for patients. In aligner 

orthodontics, the various software solutions offer the pos-

sibility of performing a virtual treatment simulation inde-

pendently, autonomously and on our own responsibility. 

High-quality in-ofÏce aligner orthodontics has thus become 
possible. This is where self-learning programs will change 

the future of orthodontics; however, how much AI we need 

and want at this stage remains to be discussed.

Conclusion

AI has arrived in our lives and will continue to conquer in 

the future. This first article in a three-part series explained 
some of the basics of AI in its current state and aspects of 

AI used in the medical sector. The following articles will take 

a more in-depth look at the state of the art and possibilities 

for AI in the future. 
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